No Widgets found in the Sidebar

If you are looking for high-quality products, please feel free to contact us and send an inquiry, email:

Difference between hexagonal and cubic boron Nitride

Boron nitride crystals are composed of nitrogen and boron. The chemical formula is 43.6% Boron and 56.4% Nitrogen. It comes in four different forms: hexagonal (HBN), Rhombohedral, (RBN), Cubic (CBN) and Wurtzite (Nitrogen Boron). The cubic crystal version (the alternate form wurtzite from boron nitride), which is the hardest substance, is widely used in alloys, high-temperature resistant materials and semiconductors. It is widely used for the production of alloys as well as high-temperature resistant material, semiconductors. nuclear reactors. lubricants.

1. Hexagonal Nitride Boron

Hexagonal boran nitride, also called “white graphene”, has a monoatomic layer made up of nitrogen atoms and then boron. The layered structure is AA’AA ‘……type and it is similar to graphene.

Hexagonal boron nitride (H-BN) is a graphite lattice, which is in the form of a loose, lubricating, moisture-absorbing, light-weight, insoluble, high-temperature-resistant white powder. Hexagonal boran nitride is chemically resistant and does not have an obvious melting point. It also has a high resistance to heat and general metals.

Hexagonal Borosilicate is an excellent thermal insulator, with high thermal conduction, good mechanical properties and thermal stability. It is used for composite material modification, sensors and ultraviolet laser devices. The layers and other aspects are important.

2. Cubic Boron Nitride

C-BN is a material that is only second to diamond in terms of hardness. It is superhard and is produced by combining hexagonal boron and a catalyst at high temperatures under high pressure.

Cubic Boron Nitride is available in amber, black and metal-plated surfaces. The particle size ranges from 1mm to less than 1mm. It is a high-quality material that has a high level of thermal stability and chemical resistance.

It is the physical properties that make the difference between hexagonal and cubic boron oxide.

Hexagonal boran nitride has a white color, whereas cubic boron is black or amber. ;

Hexagonal and cubic boron-nitride are both soft.

Hexagonal boran nitride is a raw material that can be used for the production of cubic boran nitride.

Hexagonal and cubic boron-nitride are used in the production of CBN tools.

Structure and properties hexagonal boron Nitride

The hexagonal boron-nitride crystal structure is the same as that of graphene. Multilayers are used to stack the material. Van der Waals force links the BNBs between different layers. Its crystal lattice is constants a=0.2506+/-0.0002nm and c=0.667+/-0.0004nm.

Cubic boron-nitride has excellent stability in the air. It is also very hard (Mohs Hardness 2) and can withstand temperatures as high as 2270degC. However, it will succumb at 3270degC. The hexagonal boron is also a very good material for insulation and thermal conductivity. It has low thermal expansion and shrinkage rates and does not react when exposed to weak acids or strong bases.

Hexagonal Boron Nitride: Properties and Applications

The molecular characteristics of hexagonal Boron Nitride give it many excellent physical properties. They include excellent dielectric properties and excellent thermal conductivity. At the same time, it also has chemical properties such as strong oxidation resistance, strong corrosion-resistance, and stable chemical properties.

(1) High heat resistant. Hexagonal Boron Nitride (h-BN), when heated at 3000 or higher in 0.1Mpa Nitrogen, will sublimate. At 1800, its strength is two times that at room temperature. This gives it excellent thermal shock resistance. It is cooled in the air to 1500. No rupture will occur at room temperature.

(2) High thermal conduction. The thermal conductivity (W/m*k) of hexagonal boran nitride materials is around 33W/m*k. It is comparable to that of stainless-steel, but the thermal conductivity in this case is greater.

(3) Low expansion coefficient. The hexagonal boron-nitride has a linear expansion coefficient (2.06.5*10-6/) that is only second to quartz glass. The material is also thermally conductive, which makes it excellent in terms of thermal shock resistance.

(4) Excellent electrical isolation. Hexagonal boran nitride is a good high-temperature insulator. Its maximum volume resistivity, at high temperatures of 1000 degrees, can be as high 10161018O*cm.

(5) Good resistance to corrosion. Hexagonal Borosidriad has good chemical resistance and is not affected by most metals, salts or glasses. This material is highly resistant to alkali and acid and can withstand molten glass and metals.

(6) Lower coefficient of friction. Hexagonal boran nitride is a lubricant with excellent properties. The friction coefficient is 0.16. It does not increase when heated and it has better temperature resistance than molybdenum diulfide or graphite. Up to 900degC can be achieved with the oxidizing atmosphere, while under vacuum it can reach up to 2100degC.

(7) Machinability. Hexagonal Borosilicate is easily finished using metal-cutting techniques. Turning accuracy can reach up to 0.05mm. This allows for the production of complex shapes from the hexagonal Borosilicate blank.

(aka. Technology Co. Ltd., a trusted global chemical supplier & manufacturer has over 12 years of experience in providing high-quality Nanomaterials and chemicals. Our company produces hexagonal boron Nitride with high purity, small particle size and low impurity levels. Please.

Contact us

if necessary.

By admin